Kanazawa University research: Origin of resistance to lung-cancer drug discovered

(Kanazawa, 21 March 2019) Researchers at Kanazawa University report in Nature Communications what causes some lung-cancer patients to have an intrinsic resistance to the drug osimertinib: AXL, a protein belonging to the class of receptor tyrosine kinases.  The combined application of osimertinib and an AXL inhibitor is shown to limit intrinsic resistance to the drug.

For treating cancer, drugs based on molecules known as tyrosine kinase inhibitors are sometimes used.  One such tyrosine kinase inhibitor, called osimertinib, has been used to treat EGFR-mutated lung cancer with a certain degree of efficacy.  (EGFR refers to “epidermal growth factor receptor”, a protein that plays an important role in signaling from the extracellular environment to a cell.) However, in some patients, intrinsic resistance and inadequate response to osimertinib has been seen to occur.  Seiji Yano from Kanazawa University and colleagues have now discovered that a particular protein known as AXL causes the resistance to osimertinib and the emergence of osimertinib-tolerant cells.

The researchers first showed that in vitro, osimertinib activated AXL in EGFR-mutated lung cancer cells.  Then, they demonstrated an inverse correlation between AXL and susceptibility to tyrosine kinase inhibitors; AXL expression correlated with a poor response to treatment with osimertinib and with early tumor relapse.

Yano and colleagues checked whether drug-tolerant cells (cells with significantly reduced sensitivity to drugs) exhibited higher levels of AXL.  Indeed, tolerant cells were found to display a higher expression of AXL compared to parental cells.  Application of an AXL inhibitor called NPS1034 led to a decrease in survival of the drug-tolerant cells.

The scientists then investigated the effect of the AXL inhibitor combined with osimertinib in a mouse model.  Treatment with only NPS1034 had no effect on the tumors.  Treament with only osimertinib initially led to tumor regression, but tumor regrowth was observed within 7 weeks. Simultaneous treatment with NSP1034 and osimertinib led to tumor regression within a week, and the size of the tumors being stable for 10 weeks.  No adverse effects, such as weight loss, were observed during treatment.

The findings of Yano and colleagues provide important insights into the molecular mechanisms causing the tolerance to osimertinib in EGFR-mutated lung cancer cells and, particularly, into the role of AXL — and the effect of inhibiting its activity.  Quoting the scientists: “these results suggest that treatment during the initial phase with a combination of osimertinib and an AXL inhibitor may prevent the development of intrinsic resistance to osimertinib and the emergence of drug-tolerant cells in EGFT-mutated lung cancer overexpressing AXL.”


Tyrosine kinase inhibitors

A tyrosine kinase inhibitor is a drug inhibiting (that is, preventing or reducing the activity of) a specific tyrosine kinase. A tyrosine kinase is a protein (enzyme) involved in the activation of other proteins by signaling cascades. The activation happens by the addition of a phosphate group to the protein (phosphorylation); it is this step that a tyrosine kinase inhibitor inhibits.  Tyrosine kinase inhibitors are used as anticancer drugs.  One such drug is osimertinib, used to treat EGFR-mutated lung cancer.


AXL is a receptor tyrosine kinase — a tyrosine kinase consisting of an extracellular part, a transmembrane part (‘sitting’ within a cell membrane) and an intracellular part.  AXL regulates various important cellular processes, including proliferation, survival and motility. 

In recent years, it has become clear that AXL is a key facilitator of drug tolerance by cancer cells.  Seiji Yano from Kanazawa University and colleagues have found that this is also the case for EGFR-mutated lung cancer: a high expression of AXL correlates with resistance to osimertinib, a tyrosine kinase inhibitor, and the emergence of osimertinib-tolerant cells.


Hirokazu Taniguchi, Tadaaki Yamada, Rong Wang, Keiko Tanimura, Yuta Adachi, Akihiro Nishiyama, Azusa Tanimoto, Shinji Takeuchi, Luiz H. Araujo, Mariana Boroni, Akihiro Yoshimura, Shinsuke Shiotsu, Isao Matsumoto, Satoshi Watanabe, Toshiaki Kikuchi, Satoru Miura, Hiroshi Tanaka, Takeshi Kitazaki, Hiroyuki Yamaguchi, Hiroshi Mukae, Junji Uchino, Hisanori Uehara, Koichi Takayama, and Seiji Yano. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells, Nature Communications 10, 259 (January 16, 2019)

DOI: 10.1038/s41467-018-08074-0

URL: https://doi.org/10.1038/s41467-018-08074-0


Treatment with osimertinib alone, AXL inhibitor NPS1034 alone, and osimertinib and NPS1034 combined.

 Further information

Hiroe Yoneda

Vice Director of Public Affairs

WPI Nano Life Science Institute (WPI-NanoLSI)

Kanazawa University

Kakuma-machi, Kanazawa 920-1192, Japan

Email: nanolsi-office@adm.kanazawa-u.ac.jp

Tel: +81 (76) 234-4550

About Nano Life Science Institute (WPI-NanoLSI)


Nano Life Science Institute (NanoLSI), Kanazawa University is a research center established in 2017 as part of the World Premier International Research Center Initiative of the Ministry of Education, Culture, Sports, Science and Technology. The objective of this initiative is to form world-tier research centers. NanoLSI combines the foremost knowledge of bio-scanning probe microscopy to establish ‘nano-endoscopic techniques’ to directly image, analyze, and manipulate biomolecules for insights into mechanisms governing life phenomena such as diseases.


About Kanazawa University



As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 17 schools offering courses in subjects that include medicine, computer engineering, and humanities.


The University is located on the coast of the Sea of Japan in Kanazawa – a city rich in history and culture. The city of Kanazawa has a highly respected intellectual profile since the time of the fiefdom (1598-1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 10,200 students including 600 from overseas.

Kanazawa University research: Origin of resistance to lung-cancer drug discovered

Kanazawa University research: Origin of resistance to lung-cancer drug discovered
Cancer Photo

4 years 73 Views